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Noise and Loss in Balanced and
Subharmonically Pumped Mixers:

Part I —Theory
ANTHONY R. KERR, SENIOR MEMIWR, IEEE

Abstn#-In this paper, the theory of noise and frequency conversion fs

developed for two-diode bsfanced and sufhrmmdcslly pumped ndxers.

Expressions for the eonvemion 1% noise temperature, and input snd

output impedances are derived in a form suitable for numerical antdysfs,

Sebottky dfodes sre assum~ having nonfinear capsci- series resb3-

tance (wbfch may be frequency dependent due to skin effect), snd shot snd

thermal noise.

In Psrt @ the theory is appfied to severaf pmctbxd exmnplq sod

computed results are given which show the very different effects of the

loop inductance (between the diodes) in bsfanced and subharrnonically

pumped ndxers. It is also shown tbst the ideaf twodiode ndxer usfng

exponential diodes has 8 muMpurt noise-equivalent network (attenuator)

sbnflar to that of the ideaf singfe-diade ndxer.

I. INTRODUCTION

F OR MANY years the balanced mixer has been one of

the main building blocks of microwave engineering.

The inherent symmetry of the balanced mixer gives it two

major advantages over the single-ended mixer: 1) down-

converted AM noise from the local oscillator (LO) does

not appear at the intermediate frequency terminals, and 2)

the signal and LO power enter the mixer through separate

ports, eliminating the need for an external LO diplexer. In

1974 a new two-diode mixer was reported simultaneously

by Schneider and Snell [1], [2] and Cohn et al. [3], [4]. This

subharmonically pumped mixer has the additional advan-

tage of operating with the LO near half the signal

frequency, and is particularly attractive at millimeter

wavelengths where the cost of local oscillator power in-

creases rapidly with frequency. Work by McMaster et al.

[5], Carlson et al. [6], and Cardiasmenos [7] has demon-

strated conversion loss and noise comparable with the

best fundamental mixers to over 100 GHz.

In this paper the general loss and noise analysis of

single-diode mixers by Held and Kerr [8] is extended to

two-diode mixers. The main motivation for this work was

the need to understand the effect of two parameters in the

design of subharmonically pumped mixers, the loop in-

ductance seen by currents circulating through the two

diodes, and the (nonlinear) diode capacitance, both of

which have a strong effect on the LO waveforms at the

diodes as well as on the small-signal behavior of the

mixer.

The small-signal conversion loss and noise properties of

a mixer can be determined in two main steps. First, the
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large-signal voltages and currents produced at the diodes

by the LO are determined, and from them the diode

conductance and capacitance waveforms. Then, the

small-signal conversion loss, input and output imped-

ances, and noise temperature are obtained using linear

mixer analysis.

The large-signal waveforms can be determined by com-

puter analysis if the mixer circuit (diode embedding) is

known. If the embedding circuit can be represented by a

lumped element equivalent circuit, a straightforward

time-domain integration of the circuit equations can be

performed [9] over a large enough number of LO cycles to

allow the steady state to be reached. However, if the mixer

contains distributed elements, the embedding circuit is

best characterized in the frequency domain, and in this

case the nonlinear analysis is more difficult. We have

found that harmonic balance techniques [10] will not

always converge when a large number (eight to sixteen) of

harmonics is considered, although the modified harmonic

balance method of Gwarek [11] can be made to converge

rapidly in many practical cases provided a suitable combi-

nation of parameters can be found for a partial equivalent

circuit of the embedding network. However, the muhiple-

reflection technique described by the author [12] has been

found to converge well for all the embedding impedances

we have tested, and requires only one arbitrary parameter

to be set. This method is directly applicable to two-diode

mixers provided the diodes are identical and the embed-

ding network is symmetrical with respect to the diodes.

Having determined the large-signal waveforms at the

diodes, the small-signal properties of a two-diode mixer

can be deduced using an extension of the theory of

conversion developed by Torrey and Whitmer [13].

The theory of shot noise in mixers was first investigated

in 1946 by Strutt [14], who showed that to determine the

IF output noise of a mixer it was necessary to take into

account the correlation of the down-converted compo-

nents of the periodically varying shot noise of the diode.

Following Strutt’s original work, the noise in single-diode

mixers was studied by several authors [ 15]–[ 18] assuming

two- or three-frequency models. Uhlir [19] and Dragone

[20] performed general analyses of the correlation between

the frequency components of periodically varying shot

noise in mixers, and this work was applied by Held and

Kerr [8], together with an accurate nonlinear analysis and

a multifrequency small-signal analysis, to explain the hi-

therto anomalous noise observed in mixers operating in
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Fig. 1. Equivalent circuit of the Schottky diode, including shot noise

due to current flow across the depletion layer, and thermal noise from

the series resistance R..
.

the 80– 120 GHz region. In the present paper

noise correlation theory is incorporated in

small-signal analysis of two-diode mixers.

II. THE PUMPED DIODE

Dragone’s

a general

The Schottky diode, now used in almost all microwave

mixers, is well represented by the equivalent circuit in Fig.

1, and the analysis in this paper will be based on this

model. In high-quality diodes the series resistance R, may

be a function of frequency (due to RF skin-effect) and of

voltage (because of depletion layer width modulation),

and the capacitance exponent y may also be voltage

dependent. These effects are discussed in [8] and, with the

exception of the voltage dependence of Rf, may easily be

included in the present analysis. With reference to Fig. 1

we have [21]:

ig=io[exp(a~)–l]

di

“)g=~=a(ig+zo
do,

()
e=ql–: “

and

(1)

(2)

(3)

(4)

where

a = q/qkT (5)

and the undefined symbols have their usual meanings.

If LO power at frequency tiP is applied to a diode in a

mixer, the resulting periodic conductance and capacitance

waveforms will in general contain components at all

harmonics of aP, and can be written in Fourier series form

as

g(f) = i G exp (jk~pt), (Zk= G: (6)
k=–cc

(?(t)= s C, exp (jktipt), C.k=c:. (7)
k=–w

For most practical mixers the waveforms g(t) and (?(t)

can be determined by computer using the techniques

mentioned in the In production. The Fourier coefficients

G~ and C~, together with the impedance of the diode

mount, govern the small-signal properties of the mixer.
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If the mixer operates with an intermediate frequency tiO,

the only small-signal inputs which can generate an IF

response are at the sideband frequencies [aO+ nmP 1, where

n is any positive or negative integer. We sha 11 use the

concise sideband frequency notation of Saleh [22] in

which negative frequencies are used for all lower (n< O)

sidebands: thus co.= UO+ ntiP. Writing the small-signal

components of the diode voltage and current (v, and id in

Fig. 1) at sideband u. as 8V~ and t3Z~, the conversion

properties of the pumped diode can be expressed byl

fsI= Ya ?7 (8)

where

aI=[... ,tiIl, Mo,8z_*, . . . IT (9)

and

av=[... ,M’’1, W-o,13v_1, . . . 1 ‘ (10)

The square matrix Y is the conversion admittance matrix of

the diode for the particular conductance and capacitance

waveforms. For convenience the row and column number-

ing of all matrices and vectors will correspond to the

sideband subscripts. Hence

r

row # :

i ““” “Y,l “Ylo “Y*_l ..-

Y= 0 . . . Yol Yw Yo_l . . .

–1 . . . y y y–11 – 10 –1–1 ““”

. . . 1 0 –1 . . .
column # (11)

Using this notation the elements c)f Y are given by [13]

Y~~ = G~_~ + ju,q CM_~ (12)

where G~ and C~ are the Fourier coefficients of the diode

conductance and capacitance as defined in (6) and (7).

The admittance matrix Y allows the pumped diode to

be characterized for small-signal analysis as aL (multi-

frequency) multiport network with one port for each

sideband frequency tin.

III. TWO-DIODE MIXER SMALL-SIGNAL ANALYSIS

In Fig. 2 two pumped diodes are shown connected via

their mount to external sources and loads at the various
sideband frequencies a~. In the previous section the

pumped diode was characterized lor small-signal analysis

by a multifrequency multiport network with admittance

matrix Y. It follows that two diodes and their mount can

be represented as three interconnected networks as shown

in Fig. 3. Note that the embedding network defined in
Fig. 3 includes the diode mount, the series resistance of

the diodes, and all source and load admittances Y~ con-

nected externally to the mount in ~Fig. 2, so that i,u normal

operation all the ports shown in Fig. 3 are either open-

circuited or connected to current sources at ap,w-opriate

‘ A superscript T indicates the transpose of a vector or matrix
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Fig. 2. Circuit of the two-diode mixer.
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Fig. 3. Representation of the mixer as a multifrequency multiport
network. The embedding network contains the series resistance of the
diodes and all source and load admittances Yk connected externally to
the diode mount. In normaf mixer operation the ports shown in this
diagram are all either open-circuited or connected to current sources
at appropriate sideband frequencies. Port numbering (X, k) is such
that X(= A, B, or C) indicates one of three faces of the embedding
network, and k indicates sideband frequency Uk = a. + kcop.

sideband frequencies. For clarity a double-index port num-

bering system is used (e.g., (A, – 1)) in which the first

index is a letter (A, B, or C) denoting one of three faces of

the embedding network, and the second index is a positive

or negative integer k corresponding to the sideband

frequency ~~ of the port. On each of the three faces there

is one port for each sideband. The embedding network

has the admittance matrix YE, a typical element of which

‘s ‘(;, m)(B, n)” Row and column numbering of YE is as

follows:

A,N

A,o

A,– N[

Since the embedding network is linear and time-invariant

there is no internal coupling between ports at different

sideband frequencies, and hence the only nonzero ele-

ments of YE are those for which m = n.

Partitioning YE into nine equal-sized submatrices gives

where the submatrices are all diagonal matrices (off-diag-

onal elements are zero).

If the conversion admittance matrices (8) of the two

pumped diodes are denoted by YA and YE, the parallel

connection of the two diodes with the embedding

network, as shown in Fig. 3, results in an overall mixer

admittance matrix

1 IY“= -“i;A- -: ‘- -~-ig .YE +–i:B, (14)
——— -—— ——— --— --

Y:A : Y:B : Y&

All the small-signal properties of the mixer can be derived

from this matrix and the source and load admittances Y~.

A. Output Impedance

To determine the IF output impedance of the mixer, the

IF load admittance YO (considered here as part of the

embedding network, as shown in Fig. 3) is set to zero, so

the impedance seen looking into port (C, O) is simply the

output impedance. Let Y“”IC denote the admittance

matrix of the mixer with zero load admittance, and define

.zA’ro/c Q ( yMo/c)- I (15)

The output impedance of the mixer is given by element

(C, O)(C,O) of ZMO/c; i.e.,

%lt = q&&c, o). (16)

I 1

B,N I I
B,o

B,–N

C, N

c,o

C,–N J
‘(A, N)... (A, O)... (A, -N) (B, N)... (B,OO. (B,BN)N) (C, N). O.(C, O)... (CN)N)
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For optimum conversion loss the output of the mixer

should be conjugate-matched, which is achieved if the IF

load admittance

Yo= l/(z&&c,o))*. (17)

B. Conversion Loss

Inverting the mixer admittance matrix gives the mixer

impedance matrix

@4Q(y M)-1. (18)

If a small test current 81(C ~, at sideband ti~ is applied at

port (C, k) of the mixer, the IF response at port (C, O) is

~~(c,o) = zg,o)(c,k)~~(c,k). (19)

The power delivered to the IF load is 16V(C,0)12 Re[ Ye],

and the power available from the source is

181(c,k)\2/4Re[ Yk]. Hence the conversion loss from side-

band CJk to the IF Q. is

1
(20)

‘“’k= 4/z&,o)(C,k~12Re[ Yk] Re[ Yo] “

In a similar way it is possible to determine the conversion

loss between any two sidebands.

C. Input Impedance

The impedance ZPO,,(c,k) looking into the Ok port (C, k)

on face C of the embedding network (Fig. 3) is given by

the appropriate element of the mixer impedance matrix

ZM defined in (18):

z port (c, k) = ‘~C, k)(C, k). (21)

z ~Ofi[c,k, is the impedance of the parallel combination of

the source admittance Yk and the mixer itself. The actual

input impedance of the mixer is the impedance seen by

the source admittance, and is, therefore,

(

1

)

–1

Z,nk= –Yk . (22)
‘f%, k)(C, k)

IV. NOISE

The analysis of noise in a mixer is performed in two

steps: First, the equivalent noise generators and their

correlation properties are determined for shot noise in the

pumped diodes and for thermal noise in the diode series

resistance and diode mount. Then these equivalent gener-

ators are connected to the mixer to determine the IF

output noise.

A. Shot Noise

The equivalent circuit of the Schottky diode, including

noise sources, is shown in Fig. 1. For a de-biased diode
the shot noise is Gaussian, with mean-square amplitude

given by the usual equation:

7 = 2qigAf.s (23)

When the diode is pumped at frequency UP by the local

oscillator, the current in the conductance can be written

941

in Fourier series form as

ig(t)= ~ In exp (jnul, t), I_n=I;. (24)
~=—~

As suggested by (23) and (24), the shot noise of the

pumped diode can be considered as periodically ampli-

tude modulated Gaussian noise. Following the method of

Dragone [20], the unmodulated Gaussian noise can be

regarded as a multitude of pseud.osinusoidal components

[23], [24] with different frequencies and random ampli-

tudes and phases; the effect of the modulation is to

generate sideband components related in amplitude and

phase to each of the original pseudosinusoids. !Vhen ob-

served with finite bandwidth, the noise character of the

signal is preserved because of the large number of pseudo-

sinusoids with different frequent ies. For the pumped di-

ode let 81~m and dl~n denote the complex amplitudes of

pseudosinusoidal components of the shot noise at side-

bands w~ and a.. Dragone has shown that the correlation

between the shot noise at u~ and u. is

(25a)

where (- - -) denotes the statistical (or ensemble) average,

and Z~_ ~ is a Fourier component of i~(t), as defined in

(24).

When two pumped diodes are considered, the shot

noise in each can likewise be regarded as amplitude modu-

lated Gaussian noise. Clearly there is no calrrelation

between the unmodulated noise of the two diodes since

their physical processes of noise generation are completely

independent. The modulation process generates additional

(correlated) sideband components at each diode; however,

since there is no correlation between the pseudosinusoidal

components of their unmodulated noise, there will be no

correlation between their modulated noise. For the two-

diode mixer we shall use superscripts A and B to dis-

tinguish between the diodes connet~ted at faces A and B of

the embedding network (Fig. 3): thus it follows that

B. Thermal Noise

Any linear network containing sources can be repre-

sented by a Norton equivalent circuit consisting of the

source-less network2 with a current source connected at

each port. Each current source is equal to the short-circuit

current at the same port of the original network when all

other ports are short-circuited. For a Iossy reciproca 1

N-port network at temperature T, let the pseudosinusoidal

short-circuit thermal noise currents at the ports, at any

frequency u, be M~n, n = 1,. ~ ., N. It has been shown by

2Current sources in the original network are replaced by open-circuits,
voltage sources by short-circuits.
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Twiss [25] that

(M~m 13Z~n)=4kTRe[ Y~.] A~ (26)

where Y~~ is an element of the admittance matrix of the

net work.

The embedding network of the two-diode mixer, as

defined in Fig. 3, contains the series resistance of the

diodes and also the source and load admittances normally

connected externally to the mixer. In characterizing the

mixer’s noise performance, the external terminations

should be considered noiseless. It is therefore expedient to

regard the embedding network as composed of two paral-

lel connected subnetworks, one at temperature T, and the

other, containing only the external terminations, at ab-

solute zero temperature. If the admittance matrices of

these subnetworks are respectively YE(”ntem”) and Ytem,

then

YE= y~(unterm.) + yterm, (27)

It is now possible to apply (26) to the two subnetworks

separately.3 Since Ytem at zero temperature contributes

nothing to (26),

<%(.,.)C$~?,,,.)) = 4kTRe [ Y&!i~Ti] Af (28)

where (X, m) and (Y, n) are any of the ports defined in

Fig. 3.

C. Input Noise Temperature

To determine the equivalent input noise temperature of

the two-diode mixer we first determine the IF output

noise power due to shot and thermal noise. Equations (25)

and (28) give the correlation properties of the equivalent

shot and thermal noise current sources which, in the

complete mixer (Fig. 3), are connected to each of the

ports. If the pseudosinusoidal noise current source at port

(X, k) is i31~,X,,,, we can form a vector of all the input noise

currents:

r3zN= [ ., !,81N(A,,),8ZN(A,0,,81N(A,_,,,...dIN(B,,,,dIN(B,o),azN(B,_,,

....f31N(c,,),i$IN(c,),tNN(c_,),... ] T (29a)

where

81N(A,k)= 81; + 81T(A,,

81~c, ,1 = 81; + 81T(, ,,

81~,C ,, = 8Z~(c ,).

Likewise denoting the port noise voltages

have

8 VN= [ . . . ,13VN(A,1,,8VN(A,0),i$vN(”, _,,, ..0,

w,N(B,1),f3vN,B.),8VN<B_,), . . . .

8VN(C,,),8VN(C,0),8 VN(C_,),.0. ] ‘. (30)

3The fact that these networks are multifrequency multiport networks
does not invalidate the use of (26): clearly, if the noise currents 81m and
8Zn are at the same sideband frequency, (26) is applicable. When the
currents are at different sideband frequencies the corresponding ele-
ments of YE are zero, giving, via (26), zero correlation between the
different sideband noise current components. This is the expected result
for a linear time-invariant network.

From the definition (14) of the mixer admittance matrix it

follows that

L?IN= YMC3VN. (31)

Solving for 6 VN gives

rSVN= Z“MN (32)

where ZM = ( Y“) –‘. Postmultiplying (32) by its own con-

jugate transpose gives4

d VNr3V~ = Z“MJ31$ZM’ (33)

from which it follows that

Lw,,(c ,,C?v${c,, = z&) MN W&q’$o) (34)

where Z&o, is the (C, 0) row of matrix Z“. 8 VN~c,O)is the

IF output voltage appearing at the output port (C, O) of

the mixer. Taking the ensemble average in (34) give the

mean-square IF output noise voltage

The square matrix N & {dIN 61$) is the noise current

correlation matrix for the mixer and has the general ele-

‘ent ‘(X, m)(Y, n) = (N~,X,m) ~~~(,,n)) where (X, m) and (Y, n)
are any port numbers of the mixer. From (25), (28), and

(29) it follows that, since the shot and thermal processes

are completely independent,

‘(.4,m)(A,n)
E (.IMWXII.) Af=2qIj_m Af+4kTRe[ y(A,m)(A,n) 1

(36a)

E@’em)]AfN(0)(O) =%7I;-. Af + 4kTRe[ y(B,m)(B,~)

(36b)

and, for all other combinations of values (A, B, or C) of X

and Y,

NGY,~X Y,.)= 4k~Re [ Y?x~~~y:;] ] Af. (36c)

The noise power delivered to the IF load admittance Y.

is then

P= Z~,o)NZ~~o). Re[ Yo]. (37)

Multiplying by the conversion loss (20) gives the noise

power PLO, ~ which must be available from a noisy source

admittance Y. at sideband u. to produce the same power

in the IF load as the mixer itself. The equivalent tempera-

ture of Y. is the (single-sideband) noise temperature TM of

the mixer, and is given (using (20)) by

TM= PLo,~/k Af

%%o)Nz:: O)— (38)
4kRe[ Yn]” /z&,0)(c,.J2Af

v. DISCUSSION

The small-signal and noise theory of two-diode mixers,

given in Sections 111 and IV, is generally applicable to

balanced or subharmonically pumped mixers having two

diodes mounted in any circuit. The diodes need not be

4A superscript t denotes the conjugate transpose of a matrix or vector.
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identical, and the mount may be Iossy and need not be

symmetrical. When skin-effect is present in the diodes the

series resistance should be considered a function of

frequency and the elements of the admittance matrix YE

modified accordingly.

In the analysis no distinction has been made between

balanced and subharmonically pumped mixers. The dif-

ference lies only in the internal structure of the embed-

ding network, which governs the relative phasing of the

diodes with respect to the external ports at the various

sideband frequencies and pump harmonics.

To perform the small-signal and noise analysis, the

large-signal diode conductance and capacitance wave-

forms produced by the LO must be determined. As men-

tioned in the Introduction, this can be achieved using

existing techniques when the embedding network is sym-

metrical and the diodes are identical. For cases with

dissimilar diodes and/or asymmetrical embedding

networks, a new method must be developed for the non-

linear analysis. It would appear possible to extend the

method used [12] for single-diode and symmetrical two-di-

ode mixers to cover the more general case, although we

have not aktempted this.

Extension of the present analysis to mixers with more

than two diodes is straightforward. The embedding

network of Fig. 3 requires an additional set of ports for

each additional diode, and the matrices YM and ZM must

be enlarged correspondingly. Otherwise the analysis re-

mains unchanged.

In part II of this paper the theory of two-diode mixers

is applied to specific examples and computed results are

given. It is also shown that the noise of an ideal two-diode

mixer, having exponential diodes without series resistance

or nonlinear capacitance, is equivalent to that of a lossy

network at temperature qT/2, thus answering the ques-

tion of whether a subharmonically pumped resistive mixer

is inherently less noisy than a fundamental resistive mixer.
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